Project 2: Recommender Systems

Luca Engel
luca.engel@epfl.ch

1 Introduction

This project builds a recommender system for es-
timating book ratings, using a sparse user-book
ratings dataset. As a baseline, an Alternating Least
Squares (ALS) system is implemented, achieving a
Root Mean Squared Error (RMSE) of 1.1318. To
generate a more sophisticated system, user- and
item-based collaborative filtering (CF) models are
created that use k-Nearest Neighbors (k-NN) for
similarity computation. A hybrid system as well
as adding metadata via ISBNs improve the perfor-
mance of the before-mentioned individual systems,
achieving an RMSE score of 0.8242.

The contributions of this project include the ef-
fective use of hybrid models with metadata to build
a well-performing and scalable book recommender
system.

2 Approach

2.1 Alternating Least Squares [2]

As a first approach for predicting book ratings
based on existing user-book ratings, ALS was im-
plemented. This method treats missing ratings in
a sparse user-item matrix (1) as unknown values
that need to be predicted. It factorizes the user-
book matrix into two latent factor matrices — U
and V. Alternating, both matrices are updated using
closed-form solving while the other one is fixed.
The key ALS parameters are:

¢ Number of latent factors (k): Sets the di-
mensionality of the latent factor matrices.

¢ Regularization parameter (\): Penalizes
large factor values to improve generalization.

¢ Number of iterations (n): Fixed at 20 for
convergence.

The dot product of the user and book matrix pro-
duces the predicted ratings that are then assessed
using RMSE. This CF method serves as a baseline
for the more sophisticated approaches.

Team Name: Gigubyte
Final notebook: [1]

Damian Kopp
damian.kopp@epfl.ch

2.2 User-based Collaborative Filtering [3]

User-based CF leverages similarity measurements
between users to provide rating predictions. The
method relies on the premise that users with similar
preferences will likely rate items similarly.

The k-NN algorithm is used to identify similar
users. [4] The similarity between users is calcu-
lated using the cosine similarity metric based on
user ratings. The value for k is is found through
hyperparameter tuning with a validation set. [5]
Predictions for unseen items are generated by ag-
gregating the weighted ratings of the nearest neigh-
bors to estimate the rating of a given user. Missing
ratings are changed to zero values during similarity
computation to handle the sparsity challenge. (1)

2.3 Item-based Collaborative Filtering [6]

Item-based CF identifies similarities between items
to predict user ratings. Unlike user-based CF, this
approach focuses on the relationship between items,
working on the assumption that users prefer items
that are similar to those they have rated highly in
the past.

Similar to the user-based CF, this approach lever-
ages k-NN to identify similar books using the co-
sine similarity. [4] The value for k is found through
hyperparameter tuning with a validation set. Ad-
ditionally, metadata is extracted for each book,
leveraging the books’ International Standard Book
Number (ISBN), to improve the similarity compu-
tation’s performance. [7] [8] [9] Here, with the
help of a validation set, metadata that improves the
model performance is kept and the rest is discarded.
[10] The kept metadata includes book subjects,
summaries, and language. To properly leverage
the subjects and summaries, k-means clustering is
applied on sentence transformers’ embedding vec-
tors. [11] [12] [13] [14] A fitting k is selected using
the elbow method. [15] The clusters are stored as a
weighted one-hot encoding. The weights are also
found through hyperparameter tuning.

Predictions are generated by aggregating the
weighted contributions of the k most similar items
for each unrated item

2.4 Hybrid Collaborative Filtering [1]

This approach simply averages the predictions of
both the user- and item-based CF approaches.

3 Results

For optimizing ALS, we tuned the number of latent
factors, the regularization parameter, and the num-
ber of iterations. The following shows the optimal
hyperparameters based on the results:

¢ Number of latent factors k = 50
* Regularization parameter A = 0.8

¢ Number of iterations n = 20

The corresponding ALS model produced an
RMSE score of 1.1318 when applied to the test
set.

The RMSE values for the test dataset of different
CF approaches are shown in table 1. For both user-
and item-based collaborative filtering, smaller k’s
were found to yield better performances during
hyperparameter tuning. However, from k=1 to k=5,
there is only a very slight performance drop. For all
k’s tested except for k=1 where it is equal, hybrid
CF outperforms user- and item-based CF. Adding
metadata to item-based CF mostly improved its
performance, however only slightly.

0.84

CF Type
—— User
—e— Item
—— Item NM
0.83 |-« Hybrid

0.835

RMSE

0.825

Figure 1: RMSE of CF Approaches by k (k-NN) [16]

3.1 Analysis

Achieving 1.1318 as RMSE score, ALS possesses
a mediocre prediction capability. Considering the
fact that ALS learns user-item interactions by us-
ing latent factors, the system estimates unknown
ratings considerably well. Using 50 latent factors
optimizes the tradeoff between avoiding overfitting
and capturing sufficient complexity in the data. Re-
garding the regularization parameter)\, setting it
to 0.8 prevents getting too large weights in latent

factors and still allows for good performance. The
most significant learning happens during the first
20 iterations of training which is why n is set to
this value.

According to [17], ALS does "a pretty good job
at solving scalability and sparseness of the Ratings
data, and it’s simple and scales well to very large
datasets.” The outcomes of ALS align with this
finding, especially considering the challenging cir-
cumstances of working with a very sparse dataset
(1) and without the integration of any metadata.

Both user- and item-based CF outperform ALS
while user-based CF outperforms item-based CF
slightly. In Figure 2, we can see that most users
only rated one book. However from Figure 3, we
can infer that books were largely rated more than
once. In other words, lots of "single-rater" users
rated the same books as others, which might re-
sult in non-neglectable preference overlaps. Those
overlaps allow the algorithm to detect patterns and
group users together in a more effective way than
for item-based CF where such similarities appear
less frequently, which may explain the performance
difference in Figure 1.

Our hybrid approach combines the advantages
of user-based and item-based CF as it captures both
user- and book relationships. For the given data,
this approach performs the best. Picking a value k
of 5 strikes a good balance between the low RMSE
score and staying robust against potential outliers.

Incorporating metadata into the item-based CF
system improved the performance, but only min-
imally and not for all k values as can be seen in
the direct comparison of the item-based method in
Figure 1.

Also, the test set only contains users and items
that appear in the train set at least once. Therefore,
each prediction contains at least one known user-
item interaction with heightened similarity. This
anchoring increases the accuracy of the predictions.

4 Conclusion

This project successfully developed multiple ro-
bust CF-based recommender systems for predict-
ing book ratings. After creating a baseline with
ALS, this project improved the performance with
user- and item-based as well as hybrid CF mod-
els. k-NN with the cosine similarity was used for
similarity computations. The inclusion of metadata
through ISBNs slightly enhanced the prediction ac-
curacy. The hybrid model outperformed the other

approaches by combining the strengths of user- and
item-based CF. This work contributes scalable and
efficient models that can effectively handle sparse
datasets. It also provides useful insights for future
recommender system enhancements.

References

[1] L. Engel, “Submission Hybrid Collaborative Filter-
ing.” [Online]. Available: https://kaggle.com/code/
luca3ngel/submission-hybrid-collaborative-filtering

[2] D. Kopp, “Submission ALS.” [Online]. Avail-
able: https://www kaggle.com/thymiantheherb/
submission-als

[31 L. Engel, “Submission User-Based Col-
laborative Filtering.” [Online]. Avail-
able: https://kaggle.com/code/luca3ngel/submission-
user-based-collaborative-filtering

[4] Scikit-learn, “NearestNeighbors.”
line]. Available:
learn.org/stable/modules/generated/
sklearn.neighbors.NearestNeighbors.html

[On-
https://scikit-

[5S] L. Engel, “User-Based Hyperparameter Tuning
Luca.” [Online]. Available: https://kaggle.com/code/
luca3ngel/user-based-hyperparameter-tuning-luca

[6] . “Submission Item-Based Col-
laborative Filtering.” [Online]. Avail-
able: https://kaggle.com/code/luca3ngel/submission-
item-based-collaborative-filtering

[71 1. I. Agency, “What is an ISBN?” [Online]. Avail-
able: https://www.isbn-international.org/content/
what-isbn/10

[8] L. Engel, “Submission Metadata Extraction.” [On-
line]. Available: https://kaggle.com/code/luca3ngel/
submission-metatdata-extraction

(9]

, “Submission Create Processed Metadata.” [On-
line]. Available: https://kaggle.com/code/luca3ngel/
submission-create-processed-metadata

(10]

, “Item-Based Hyperparameter Tuning.” [On-
line]. Available: https://kaggle.com/code/luca3ngel/
item-based-hyperparameter-tuning

[11] Scikit-learn, “KMeans.” [Online]. Avail-
able: https://scikit-learn.org/stable/modules/
generated/sklearn.cluster. KMeans.html

[12] N. Reimers and 1. Gurevych, “Sentence-bert:
Sentence embeddings using siamese bert-networks,”
in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 11 2019.
[Online]. Available: http://arxiv.org/abs/1908.10084

[13] L. Engel, “Submission Subject Clustering.” [On-
line]. Available: https://kaggle.com/code/luca3ngel/
submission-subject-clustering

[14] D. Kopp, “Submission Summary Clustering.”
[Online]. Available: https://www.kaggle.com/code/
thymiantheherb/submission-summaries-clustering

[15] GeeksforGeeks, “Elbow Method for optimal value
of k in KMeans,” Jun. 2019, section: AI-ML-DS.
[Online]. Available: https://www.geeksforgeeks.org/
elbow-method-for-optimal-value-of-k-in-kmeans/

[16] L. Engel, “Submission Performance Plots.” [On-
line]. Available: https://kaggle.com/code/luca3ngel/
submission-performance-plots

[17] K. Liao, “Prototyping a recommender

system step by step part 2: Alternat-

ing least square (als) matrix factorization
in collaborative filtering.” [Online]. Avail-
able: https://towardsdatascience.com/prototyping-
a-recommender-system-step-by-step-part-2-

alternating-least-square-als-matrix-4a76c58714al

https://kaggle.com/code/luca3ngel/submission-hybrid-collaborative-filtering
https://kaggle.com/code/luca3ngel/submission-hybrid-collaborative-filtering
https://www.kaggle.com/thymiantheherb/submission-als
https://www.kaggle.com/thymiantheherb/submission-als
https://kaggle.com/code/luca3ngel/submission-user-based-collaborative-filtering
https://kaggle.com/code/luca3ngel/submission-user-based-collaborative-filtering
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://kaggle.com/code/luca3ngel/user-based-hyperparameter-tuning-luca
https://kaggle.com/code/luca3ngel/user-based-hyperparameter-tuning-luca
https://kaggle.com/code/luca3ngel/submission-item-based-collaborative-filtering
https://kaggle.com/code/luca3ngel/submission-item-based-collaborative-filtering
https://www.isbn-international.org/content/what-isbn/10
https://www.isbn-international.org/content/what-isbn/10
https://kaggle.com/code/luca3ngel/submission-metatdata-extraction
https://kaggle.com/code/luca3ngel/submission-metatdata-extraction
https://kaggle.com/code/luca3ngel/submission-create-processed-metadata
https://kaggle.com/code/luca3ngel/submission-create-processed-metadata
https://kaggle.com/code/luca3ngel/item-based-hyperparameter-tuning
https://kaggle.com/code/luca3ngel/item-based-hyperparameter-tuning
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://arxiv.org/abs/1908.10084
https://kaggle.com/code/luca3ngel/submission-subject-clustering
https://kaggle.com/code/luca3ngel/submission-subject-clustering
https://www.kaggle.com/code/thymiantheherb/submission-summaries-clustering
https://www.kaggle.com/code/thymiantheherb/submission-summaries-clustering
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/
https://kaggle.com/code/luca3ngel/submission-performance-plots
https://kaggle.com/code/luca3ngel/submission-performance-plots
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1

5 Annex

User-Item Matrix Sparsity
Number of non-zero ratings

" Total number of possible ratings
Number of non-zero ratings

Nb Users x Nb Books
100523

18905 x 15712 0.9997

(D

Distribution of Ratings per User

60%

w » v
2L 2 B
2R

Percentage of total users
N
o
X

10%

0% I-------———_______
2 3 45 6 7 8 91 112 13 14 15 16 17 18 19

Number of ratings by user

Figure 2: Percentage of Users who Gave a Given Num-
ber of Ratings

Distribution of Ratings per Book

20%

10%

5% III

0% II....----——
5 10 15

Number of ratings per book

H
M
&

Percentage of total books

Figure 3: Percentage of Books with Given Number of
Ratings

CFType k=1 k=3 k=5 k=10 k=20 k=40

User 0.8238 0.8244 0.8252 0.8266 0.8287 0.8338
Item 0.8238 0.8241 0.8256 0.8279 0.8321 0.8385
Item NM 0.8238 0.8263 0.8260 0.8274 0.8314 0.8397
Hybrid 0.8238 0.8240 0.8242 0.8246 0.8250 0.8265

Table 1: RMSE of CF Approaches by k (k-NN)
NM: no metadata

