Project 1: Document Retrieval

Luca Engel
luca.engel@epfl.ch

1 Introduction

Document retrieval using a large corpus comes with
numerous challenges. Finding a robust system that,
given an input query, retrieves the 10 most rele-
vant documents out of a large document corpus
was the goal of this project. This report compares
and discusses various retrieval methods for this
task. It evaluates TF-IDF, BM25, and dense doc-
ument retrieval on a multilingual dataset. We find
that BM?25 is efficient, robust, and effective at han-
dling long documents, while dense retrieval per-
forms worse due to memory and computational
constraints. TF-IDF performs the worst. These
results suggest that BM25 offers a suitable solution
for retrieving long-form documents with limited re-
sources, while dense retrieval, despite its strengths
for capturing semantic similarity, cannot match this
performance under the given constraints.

2 Approach
2.1 TF-IDF

One of the simplest methods for document ranking
is TF-IDF. It highlights words that appear more
frequently within the input query but are rare across
the corpus. TF-IDF ranks documents based on
TF (term frequency) and IDF (inverse document
frequency):

TF-IDF(t,d, N) = TF(t, d) x IDE(t, N

__ Number of appearances of ¢ in d
° TF(t’ d) ~ Total number of terms in d

¢ IDF(t’ N> = lOg(Number of docur]r\lfents containing t)
t denotes a term, d a document, and /N the number
of documents in the corpus.

The IDF values of all terms in the corpus are
computed independently of the queries. During
inference, the input query’s TF values are calcu-
lated, while the corresponding IDF values have
been precomputed over the corpus. By using co-
sine similarity, the TF-IDF scores of the query are

Team Name: Gigubyte
Final notebook: [1]

Damian Kopp
damian.kopp@epfl.ch

compared to those of the corpus documents, provid-
ing a similarity score between 0 and 1. The corpus
documents are then ranked based on these scores
to identify the most relevant matches for the query
[2]. One notebook was used for precomputations
[3] while another notebook [4] was used for the
inference using the precomputations.

2.2 BM25

BM25 is another bag-of-words retrieval method
that ranks documents based on query relevance. It
balances document length normalization, term fre-
quency, and inverse document frequency. The core
concept of using TF and IDF is similar to the TF-
IDF system. However, other than TF-IDF, which
simply multiplies term frequency with inverse doc-
ument frequency, BM25 introduces additional pa-
rameters, k1 and b, to adjust the contribution of
term frequency. The BM25 score for a term ¢ in a
document d is computed as:

BM25(t,d, N) = TF(t,d) - (k1 + 1) - IDF(t, N)

TE(t,d) + k1 (1= b+ b ey

where

IDF(t, N) = In <N_”(t)+05 1)

n(t) + 0.5

N is the total number of documents, n(t) is the
number of documents containing ¢, kj is a term
frequency parameter (often between 1.2-2.0), b
is the document length normalization parameter
(between 0 and 1), |d| is the length of d, and avgdl
is the average document length.

BM2S5 uses the parameter k; to ensure that the
term frequency’s impact is capped. This prevents
frequently occurring terms from excessively affect-
ing the score. Additionally, parameter b is used to
apply document length normalization. This helps
to prevent longer documents from being overly fa-
vored [5].

We chose BM25 due to its robustness in han-
dling large-scale datasets and its ability to deal

effectively with lengthy documents while keeping
computational resource requirements low. Similar
to TF-IDF, two notebooks were used for precom-
putations [6] and inference [1], respectively.

2.3 Dense Vector Retrieval Text Embeddings

Dense retrieval leverages embeddings to capture
semantic representations of text. We implemented
this approach in a notebook [7] by leveraging Sen-
tence Transformers combined with FAISS, a state-
of-the-art vector similarity search library. [8] [9]
[10] Given the long document lengths, we split
each document into smaller chunks to make them
compatible with embedding models’ token limit.
Also, this may improve retrieval as long documents
make finding precise matches when querying the
index more difficult. [11]

To optimize retrieval time and accuracy for our
multilingual dataset, we divided the database into
7 subsets, one for each language.

2.4 Challenges

One of the main challenges for dense vector re-
trieval was handling long documents. Sentence
Transformers, which are used to generate dense
embeddings, have a token limit. This made it neces-
sary to split documents into smaller chunks. While
chunking significantly improved the performance,
memory and computational constraints limited our
ability to fully exploit the model’s capacity, and the
retrieval score remained below 0.5. For these doc-
ument lengths, finetuning large pretrained models
would likely have resulted in a better performance.
However, due to the available GPU’s memory and
computational constraints, this approach could not
be tested.

Additionally, while BM25 can efficiently handle
large document lengths, dense retrieval’s reliance
on embeddings introduces overheads that can only
be mitigated with more computational resources.

3 Results
TF-IDF | BM25 FAISS
0.37376 | 0.77351 | 0.47153

Table 1: Best scores per method

BM25 achieved a retrieval score of 0.77, sig-
nificantly outperforming the other two approaches,
which both remained below 0.5. For all approaches,

b=0.35 | b=0.45 | b=0.55
ki=1.4 | 0.77351 | 0.76980 | 0.77227
k;=1.5 | 0.77351 | 0.77351 | 0.76980
ki=1.6 | 0.76980 | 0.77103 | 0.76856

Table 2: BM25 Recall@10 Scores for Different b and
k1 Values on the Validation Set

performance was evaluated across the seven lan-
guages in our dataset, but the overall trend re-
mained consistent: BM25 provided a more accurate
and computationally feasible solution. The highest
performance was with k1 = 1.5 and b = 0.45.

4 Analysis

The superior performance of BM25 in this case can
be attributed to its ability to handle long documents
effectively without requiring complex embeddings
and to still capture the information detailed enough.
In contrast, dense retrieval struggles with long doc-
uments because embedding models are constrained
by token limits, and chunking strategies may not
always capture the document’s context effectively.
Additionally, the computation time and memory
requirements for dense retrieval were significantly
higher, further complicating its implementation.
TF-IDF is less computationally costly than BM25,
but that clearly harms the number of correct docu-
ment rankings as TF-IDF is more sensitive to docu-
ment length variations.

Splitting the database by language slightly im-
proved the retrieval speed for all approaches, but
it did not substantially impact the final score for
dense retrieval. The choice of model (Sentence
Transformer vs. BM25 vs. TF-IDF) was crucial.
In this case, BM25 proved a suitable trade-off be-
tween being lightweight and capturing information
accurately for our task.

5 Conclusion

In scenarios where documents are particularly long,
BM25 remains a highly efficient and effective
method for document retrieval. Dense retrieval,
while powerful in theory due to its semantic un-
derstanding, requires significant computational re-
sources to outperform simpler statistical methods
like BM25. Future work could explore more scal-
able dense retrieval models or hybrid approaches
that combine the strengths of both methods. Also,
the use of more sophisticated tokenizers could fur-
ther improve the performance.

6 Appendix

The notebooks described and referenced in the re-
port can be found here:

¢ Dense Document Retrieval with Sentence
Transformer and Faiss: [7]

* BM25

— Precomputations: [6]
— Inference: [1]

* TF-IDF:

— Precomputations: [3]
— Inference: [4]

The algorithms for BM25 and TF-IDF are di-
vided into two separate notebooks: The "Precom-
putations" notebook computes the needed elements
such as the vocabulary and necessary matrices,
while the "Inference" notebook generates the final
predictions.

References
[1] ThymianTheHerb. Submission bm?25 in-
ference. https://www.kaggle.com/code/

thymiantheherb/submission-bm25-inference,
2024. Accessed: November 1, 2024.

[2] Wikipedia contributors. tf-idf, 2024. Accessed:
2024-10-01.

[3] ThymianTheHerb. Submission tf-idf precomputa-
tions, 2024. Included in submission ZIP file.

[4] ThymianTheHerb. Submission tf-idf inference, 2024.
Included in submission ZIP file.

[5] Wikipedia contributors. Okapi bm25, 2024. Ac-
cessed: 2024-10-01.

[6] ThymianTheHerb. Submission bm25 precomputa-
tions, 2024. Included in submission ZIP file.

[7] Luca Engel. Submission sentence transformer em-
bedding approach, 2024. Included in submission ZIP
file.

[8] Faiss: A library for efficient similarity search, March
2017.

[9] Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. The faiss library, 2024.

[10] SentenceTransformers Documentation — Sentence
Transformers documentation.

[11] Roie Schwaber-Cohen. Chunking Strategies for
LLM Applications | Pinecone.

https://www.kaggle.com/code/thymiantheherb/submission-bm25-inference
https://www.kaggle.com/code/thymiantheherb/submission-bm25-inference

